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1 Introduction and a reorientation

Contract F49620-92-J-0056 dealt with mathematical aspects of "electromagnetic bullets."
The research had tw,. objectives:

la) Given a solenoidal vector field J defined throughout a region R, find, if possible,
a set of Clebsch Po.cnftials[27] , 17 such that

J=grad x grad 7 in R (1)

Note: If we pick a point p in R then Clebsch potentials are known to exist in
some neighborhood U of p.

1b) In general, find the topological obstructions to finding a set of globally defined
Clebsch potentials.

2) Investigate the (time domain) techniques required to formulate a nonlinear
version of the Lorentz Reciprocity Law.

From the outset, I mention that much folklore appearing in the published literature has
serious errors which must be articulated in order to achieve the objectives of the proposed

research. Specifically,

1. It is widely believed (Kuznetsov and Mikhailov[54] are often cited as a source) that

a set of global Clebsch potentials can be found by "pulling back" the area formed
on the sphere S'. In the physics literature this is called an n-field representation.
Although the underlying intuition can be obtained by appealing to the gyrovector
in micromagnetics[50, 51], I have shown[53] that the gyrovector construction is not
possible for a general solenoidal vector field. (The present research follows up on this.)

2. The nonlinear version of Lorentz Reciprocity cannot be articulated in terms of fre-
quency domain concepts. Similarly, the fact that a Fourier Transform relates an an-
teitna's far field to its sources cannot be used to "_rplain" why electromagnetic bullets

or missiles cannot exist since, by construction, there is no far field for a bullet. Over

the last year it has become clear that one has to deal with Maxwell's Equations as a

system of hyperbolic p.d.e.'s and avoid the temptation of using elliptic theory which
is applicable when taking a Fourier Transform (as engineers are trained to do) and

playing with Helnholtz's equation. The way to achieve these goals is to reexamine the
"raison d'etre" for the use of the Radon transform in these hyperbolic problems.

In reference to this second point, I have discovered that the Mathematics Literature has a
natural reason for the appearance of the Radon transform[74, 51. Specifically, if one tries

to describe the lacunas (Latin for hole) of fundamental solutions of hyperbolic p.d.e.'s, one
notices that the support (in space-time) of the singular part of a solution lies on a light cone

made of rays. These rays are identified with the points of a projective space which form the

domain of integration in the Radon transform. Although not part of the original research
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plan, pursuit of this observation seems crucial for a deeper understanding of the bullet idea
and of reciprocity.

In addition to the ties with lacunas of hyperbolic equations, my research has focused
primarily on two areas:

1. The role of higher order linking of flux lines as an obstruction to Clebsch potentials.
(i.e. Massey products in a suitable cohomology ring come to play.)

2. Finding an underlying incredible Hamiltonian system with enough structure to indicate
obstructions to globally defined Clebsch potentials. (So far we have three such systems
but the clearly articulated obstructions are still forthcoming.)

The remainder of the report develops the two above topics with emphasis on the first.

2 Massey Products and obstructions to Clebsch po-
tentials

2.1 Relationship to recent developments in algebraic topology

Massey Products[56, 57, 80] are a way of articulating higher order linking. For example, the
curves

are unseparable because they are linked. Higher order linking can be illustrated by Bor-
romean rings:

where the three rings cannot be separateeven though pairwise they can be separated. (In
a previous publication[48] I have stumbled across a need for Massey products in another
context. This higher order linking is important in the context of Clebsch potentials since
they describe an obstruction to having a set of single valued globally defined potentials. To
develop this connection further, recall that in a neighborhood U of a point p, a solenoidal

3



vector field J is expressible in terms of Clebsch potentials and hence, it's vector potential
(which we denote by F) has a Monge potential representation:

J = curl F where

F = ad -q + grad u (2)

Ties between Clebsch potentials and Massey products are best motivated by appealing to
the "helicity of the vector potential." The helicity of a vector field G is given by

f G - curl G dV (3)

and its interpretation in terms of twisted and tangled flux lines has been developed by Moffatt
in the context of magnetohydrodynamics[63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 2]. Berger
and Field[91 have continued this investigation and Berger has given explicit expressions for
Massey Products in the notation of pedestrian vector analysis[10]. In my publication[53] I
show that an obstruction to globally defined Clebsch potentials follows from the fact that
the helicity of any vector potential described by global Monge potentials vanishes. More
concretely, nonzero total helicity implies an obstruction.

Further insight into the tie between helicity and the global obstructions to Clebsch po-
tentials can be found by appealing to the Frobenius integrability condition:

If F. curlF=0 inU 1 (4)
then F = grad i for some e and J

A quick calculation shows that the converse of the implication (4) is true. By the gauge
freedom of b, apparent in (2), we see that setting ib equal to zero ensures that the heicity of
F can be made to vanish in some neighborhood of any point p! Since the helicity integral (3)
subject to boundary constraints is usually a fixed nonzero number we see that the obstruction
to globally defined Monge (and hence Clebsch) potentials follows from the twisting and
tangling of flux lines and from Massey products describing "linking" of closed flux lines.

The tie between helicity and Massey products or other obstructions to globally defined
Clebsch potentials is still incomplete but recent mathematical developments point to a deep
connection between these ideas. To see this we note that all of the above arguments can be
rephrased in terms of differential forms in order to demonstrate that they are independent
of the Riemannian metric on the space. This coordinate free approach then ties into some
basic facts and some recent history:

1. There is a non-abelian generalization of the helicity: the "Chern-Simmons Secondary
Characteristic Classes,"[26, 731. That is, if one thinks of a 1-form as a U(1) connection
and it's exterior derivative as a curvature, the helicity reduces to a Chern-Simmons
form. More generally, if A is a Lie algebra valued 1-form, and

dA+AAA (5)

the associated curvature, the Chern-Simmons form looks like:
r 2

tr[4 A dA + 2 AAAAAI (6)
4 3
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Ed Witten[93] has constructed an associated topological quantum field theory which
yielded the Jones polynomial of knot theory[44] and an extension to three-manifolds
(as well as a fields medal for Witten). The underlying philosophy is that if one starts
with a metric invariant Lagranian (the Chern Simmons form in this case) then the
expectation values associated with any metric independent observable are necessarily
topological invariants.

2. To most mathematicians, Witten's use of Feynmann path integrals is tantamount to
witchcraft, and so an independent approach to the Jones polynomial is sought via
orthodox algebraic topology. Such an understanding is beginning to emerge through
the work of Vassilliev[89, 121 who uses the Weierstrauss approximation theorem to
build a sequence of spaces approximating, and in some sense converging, to the "Space
of embeddings of S' into V" (i.e. the space of all knots). Vassiliev's invariants are
then extracted from a spectral sequence involving the reduced homology groups of
these spaces. Birman and Lin have extracted the Jones polynomial from Vassiliev's
invariants. See Birman[12] for a recent survey article (especially Section Four). Finally,
it is important to say that the entire formalism goes over to the case of links (i.e.
embeddings of several copies of S' in R 3 ).

3. What is most exciting is the emerging relationship between perturbative approaches
to the Chern-Simmons topological quantum field theory and Vassiliev's invariants.
The recent work of Baez[6] and Kontsevich[47], appear to be the first successes at
making the Feynmann integral approach to 'Vassiliev invariants a part of orthodox
algebraic topology. The bridge to link invariants such as Massey products is also
emerging through attempts to decompose Vassiliev's invariants into a sum containing
well known invariants and "other terms." The Milnor p-invariants are known to arise
in this way[7, 13]. In the context of knot complements, earlier work[75, 88] has shown
that these 1-invariants are just Massey products.

4. Another framework for Jones-like invariants comes from the study of "exactly solvable
problems in statistical mechanics," R-matrices, and quantum groups. Although it is
beyond my competence to describe these developments, it is important to point out one
connection with my previous work on the helicity functional. In[49] I consider the fi-
nite element discretization of the helicity functional (3) by means of Whitney forms[90].
Over a tetrahedron A, the discretized expression involves six independent edge vari-
ables h , 1 < i, j 4, where the indices correspond to vertices of the tetrahedron and
h = -hji. Upon discretization we have

J H . curl H dV i h1 2hs4 - h13h24 + h 14h2 3  (7)

The right hand side is the Pfaffian of the skew-symmetric 4 by 4 matrix formed by
the h j and it clearly preserves the metric independence of helicity. This expression
has the same symmetries as the "6-j symbols" which appear in the tensor products of
group representations and hence seem to point to a more direct link with quantum group
invariants. Although intriguing, a more articulate description of what is going on is
not apparent to me or prominent experts whom I have approached.
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The above four points are summarized schematically in Figure 1. Our objective is to
articulate how "linking and tangling of flux lines" provide a global obstruction to defining a
set of global Clebsch potentials. Noting that Monge potentials can always be chosen so that
the helicity density vanishes locally, the helicity integral provides an obstruction to globally
defined Clebsch potentials and a bridge to an algebraic description of the obstruction (e.g.
Massey products).

Chern Simmons Witte_.,__n Jones
TQFT Polynomial

I Birman & Lin

__7~ezV as'sGobillion Vey Helicity ' Invariantsasle'

&other dynamx~cal .'A A

system ideas Whitney A

forms A Lin, Bar-Nathan
A

A4
A

Massey Pnrter Milnor p-invariants
Products Turaev I

Figure 1: Question: Can Whitney forms and finite elements provide a more direct link?
Possible Answer: Pfafllan Expression for Helicity

2.2 A diversion on Massey products and Morse inequalities

It is my belief that Massey products have a fundamental role to play in critical point theory
via the "Mountain Pass Lemma" and its generalizations[81]. The basic underlying intuition
is illustrated by issues in biomedical imaging[45, 78]. Formally, we would like to make a
connection between Morse theory and Massey products. Let us begin by reviewing the
fundamentals of Morse theory[61, 14, 34, 62].

Consider a compact n-dimensional manifold M, denote the ith Betti number (i.e. the rank
of the ith homology group) by /3i(M), and form the Poincar6 polynomial:

n

Pt(M) A E tk 1k(M) (8)
k=O

The critical points, {pi}, of a function f, mapping M to R1, are said to be nondegenerate
if the Hessian matrix (i.e. matrix of second partial derivatives) has full rank at every critical
point. A function with nondegenerate critical points is called a Morse function. (Morse
functions are not rare in that they form an open dense set in the space of all functions.)
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Given a Morse function on M, we define the index of the j h critical point, pj, to be the number
of negative eigenvalues of the Hessian matrix evaluated at pj. (Note: the eigenvalues are real
because the Hessian is symmetric, and nonzero since pj is nondegeuerate.) Let mi be the
number of critical points of index i, and form the Morse polynomial:

M,(f)= tk mk(f) (9)
k=O

A fundamental result of Morse theory asserts that

Jmt(f) - Pt(M) = (1 + t) Qt(f) (10)

where Q(f) is a polynomial with nonnegative integer coefficients. An equivalent formulation
(the Morse inequalities) is found by equating powers of t, solving for the coefficients of Qt(f)
and using the ionnegativity of these coefficients to obtain the inequalities:

mo >#o
m1 -m o A 9 - o

m2 -m 1 +mo > /32-3i+3o

i _> !(11)

Given the Morse Inequalities expressed in the form 'of equation (10), two strategies for their
use emerges:

1. If Pt(M) is known, then one has a lower bound of the number of critical points of every
index. Specifically, a very loose bound is given by mi /3i for all i.

2. If no consecutive powers of t occur in the Morse polynomial then Qt(f) = 0 and so
M#(f) = Pt(M). In this case knowledge of the critical points gives complete knowledge
of the Betti numbers.

A function for which Mt(f) is equal to Pt(M) is called a perfect Morse function. In
general there are topological obstructions to finding a perfect Morse function. For example,
the Morse inequalities are also valid if homology groups are computed using coefficients from
any field (e.g. Zp where p is a prime). Hence a perfect Morse function is only possible when
the homology groups of M are torsion free.

With this background we can return to the topic of Massey products. Concretely I
would like to conjecture that the obstruction to finding a perfect Morse function depends on
Massey products (just as the obstruction to globally defined Clebsch potentials seems to).
Specifically, I have a conjecture:

Qtf) - 0 J All Massey products in the (12)S= 0 =- Icohomology ring of M are trivial J
I have bits of circumstantial evidence to support this conjecture. I will present them before
I proceed to outline how I may go about proving (12).
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1. The construction of perfect Morse functions plays a great role in computing Poincar'
polynomials in various contexts. For example Yang-Mills Theory on Riemann Surfaces,
stable homotopy groups of Lie groups[14], Grassmannians, etc. These examples seem
to indicate that the above conjecture is overly ambitious. However, in these cases the
underlying manifold has a KhIer structure, and it is known that Kiler manifolds
have vanishing Massey Products[39]. Hence, in order to make progress with the above
conjecture, we can search the literature for answers to the following two questions:

(a) Do all K.ler manifolds admit a perfect Morse function? If not what are the
obstructions?

(b) Are there classes of non-Khliler manifolds which are known to admit perfect Morse
functions?

2. In both the calculus of variations and finite dimensional critical point theory, the
"mountain pass lemma" is frequently used to exhibit saddle point extrema. (This is
a powerful technique in the theory of nonlinear elliptic equations[81]). Underlying
the proof of the mountain pass lemma is a linking argument which leads to deeper
results. The notion of linking describes the simplest of cohomology operations and
Massey products appear to be the right framework for generalized results in critical
point theory.

To see how Massey products can come into Mqrse Theory naturally, we have to recall
how the polynomial Qt(f) arises in the first place. The level sets of a function f: M --, R
define a "stratification" of the manifold M. Let us perturb f such that all critical points are
nondegenerate and each level set contains at most one critical point. Furthermore, define
submanifolds

XC = {x E M I f(x) < c} (13)

If BA denotes the A-dimensional unit ball whose boundary is the (A - 1)-iclmensional sphere
SA-1, and . is used to denote a homotopy equivalence, then it is a basic result[14, 34, 61],

that for sufficiently small e > 0, we have the following "change in topology" formula:

JXc-: if c is not a critical value
Xc+, ,,. X,-e U B' if c is a critical value tied to a critical point p (14)

of index A.
To see how the polynomial Qt(f) emerges we now appeal to algebraic topology. Consider
the above "change in topology formula" for each critical point pj and corresponding critical
value cl. Introduce the inclusion and projection maps:

: xc J+: (15)

a s h e seue c o Xhe+c/XCjl

and consider the long exact sequence of homology groups arising at the jh critical point:

8



Hk-I(Xc- !± Hk(Xc+t)~ HkI(XC+XCjC)

(16)

where ij~j and rj,l are induced mappings on the Ith homology groups and Sjj is the "connecting
homomorphism." If we define the Poincar6 polynomial of the connecting homomorphism as

n

P(Im 6j) E dim(Im 6j+i) tk (17)
k=O

then, by standard techniques[34], we have

P(Xcj+,, XcjC) = P(Xcj+c) - P(Xj-e) + (1 + t) P(Im 6 ) (18)

We will now outline how the Morse inequalities follow if we extract the algebraic content
of equation (14) and consider equation (18) for each critical point and sum. First, from
equation (14) we deduce a homotopy equivalence

Xcj,.)+e- X.j_ (19)

and so, by the homotopy invariance of homology groups, we have

Hk(Xcjl)+C) - Hk(Xcj-e) for all k 1
and Pt(Xcj,)+e) Pt(Xj-) (

Notice that if f has N critical points Xco-, is the empty set and X,,+, is M. Equation (20)
then shows that if we consider a copy of equation (18) for each critical point and sum, the
first two terms on the right hand side form a telescoping sum so that

N N
E Pt(Xcj+e, X-) = Pt(M) + (1 + t) Ej Pt(Im 6j) (21)

j=1 j=1

Next, we continue to extract algebraic consequences of equation (14). As we cross a critical
value, B)J in equation (14) is attached to Xcj-e along an S'j-1 and this provides us with a
relative homotopy equivalence which descends to an isomorphism of homology groups and
equality of Poincar6 polynomials:

(XCI+CXqj-C) (S-',pt.) implies "
Hk(Xc+I,Xj-) "" Hk(SM9,pt.) for all k, (22)

and so Pt(Xcj+,Xcj-) = Pt(SAJpt.) = t>J

9



Substituting this expression for the Poincar6 polynomial into the left hand side of equa-
tion (21) and collecting terms with same index, the left hand side is seen to be the Morse
polynomial defined by equation (9). Hence

N
Mt(f) = P(M) + (1 + t) -P(Im 6) (23)

j=1

At this point we recover the Morse inequalities (10) and Qt(f) can be identified with the
summation on the right hand side - but we can do better!

Given the homology groups of the sphere modulo a point, equation (22) shows that
Hk(Xcj+.,Xcj-.) is trivial unless k=Aj. Hence, in the exact sequence (16), the connecting
homomorphisms are all trivial except for possibly 6j,\j. This means equation (17) can be
simplified to:

Pt(Im j) = dim(Im 6,A)tAJ- 1  (24)

Substituting this into (23) and identifying Qt(f) gives

Qt(f) = I dim(Im 5,AJ)ti- l (25)

At this point we can return to the conjecture (12). The conjecture amounts to saying that if
we compute the cohomology of the manifold M by using a cell decomposition derived from
the critical points and level sets of a Morse function, then nontrivial Massey products in
the cohomology ring should force dim(Im 6,) to be nonzero for some collection of j's. To
make this precise, we propose to compute the cohomology of M by appealing to a spectral
sequence arising from the cell decomposition of M and to reexpress Qt(f) in terms of the
differentials of the spectral sequence. It is known that Massey products are naturally related
to the differentials of a spectral sequence[59] and, hopefully we can obtain deeper insight
into conjecture (12) by pursuing the spectral sequence framework.

Let us consider two other contexts which shed light on conjecture (12):

3. Further insight into conjecture (12) can be obtained by considering the obstruction to
finding a perfect Morse function on a compact, connected, orientable, three dimensional
manifold M3 . To start, consider two embeddings, M1 and M2 , into R 3, of a compact,
connected, two-dimensional manifold M' of genus g. The embeddings force Mi (i = 1,
2) to be orientable and hence they have an "inside" and an "outside." Call the insides
H1 and H2 so that

OHi = Mi (i = 1,2) (26)

The Hi's are called handle bodies. If we have a dir-eomorphism a : M, --+ M,2 then we
can glue H, to H2 along their boundaries to get a bhree manifold M3:

M3 - H, U H2 (27)

10



It is a basic result in three manifold theory that any connected, compact, orientable
3-MLnifold M3 admits such a splitting for some g[76]. This is called a Hegaard splitting
of M3 . The minimal genus g for which a given manifold M3 has a Hegaard splitting
is a topological invariant called the genus of M3 and is denoted here by go(M 3). The
genus of M3 has a definition in terms of the fundamental group of M3.

We next consider Hegaard splittings which arise from Morse functions. Consider first
the following

Basic Fact: Thall.3[34]

Let Mn be a smooth compact connected n-dimensional manifold. Then, on
M n , there is an admissible Morse function f, where 0 < f < n, such that it
has only cne minimum (point of index 0), only one maximum (point of index
n), and each critical point of index A is situated on the surface i' ().

Note that this statement implicity defines the notion of an admissible Morse function.
As a corollary, we see that an admissible Morse function defines a Hegaard splitting.
Concretely, the Morse polynomial of an admissible Morse function f : M3 -+ 1R looks
like:

Mt(f) = 1 + (1 +t) t g(f) + t2  (28)

where g(f) is the genus of the two dimensional manifold f-1 (2) and the "handle bodies"
of the Hegaard splitting are given by:

HI = Ix E M I f(x) S}
(29)

H2 = {x E M If(x) 21.

In this case, the Poincar6 Polynomial looks like

Pt(M3) = 1 + (1 + t) t p1 (M3) + t3  (30)

Equations (10), (28), and (30) enable us to compute Qt(f):

(1 + t) Qt(f) = Mt(f) - Pt(M 3) = (1 + t) t (g(f) -p(M3))

(31)
i.e. Q(f) = t (g(f) - #I(M 3))

Equations (25) and (31) give us the nontrivial result:

g(f) - pl(M 3) = dim(Im 6j.,A) (32)
j1j=2



S &

By definition, for any admissible Morse function we have

g(f) - 3(M3) g*(M') - A (M) 0 (33)

The fact that g*(M 3 ) > PI(M 3 ) for most 3-manifolds shows us that perfect admissible
Morse functions can rarely be expected to exist. Hence, to shed light on conjecture
(12) we can consider three questions:

9 Is there any obstruction to finding an admissible Morse function for which

g(f) = g(M

* Is g*(M 3 ) - p1 (M3 ) expressible in terms of the cohomology ring of M3 and in
particular, the "number" of nonzero Massey products? (Valuable insight might
be obtained by relating g*(M 3) to ir,(M 3) to Milnor's p-invariants, to Massey
products)

* How can alternate definitions of g*(M 3) along with equations (32) and (33) be
exploited?

4. Finally, in order to relate Massey products to Morse theory, we may try to relate
Witten's proof of the Morse inequalities[92', the heat equation method for harmonic
forms[30], in the context of Witten's deformed Laplacian, and John Lott's work on the
asymptotics of the heat kernel and its relation to Massey products[55].

This connection may also have implications for molecular biology[91, 85, 32].

3 Focus of ongoing research

3.1 Resolvable intermediate problems regarding Clebsch poten-
tials

Surveying the literature, it is clear that there is no "usable answer" to the question of finding
the topological obstruction to having globally defined Clebsch potentials. Furthermore, the
engineering and physics literature is riddled with papers which are completely erroneous when
it comes to articulating the global existence of Clebsch potentials. On the other hand, the
mathematics literature, in particular the theory of G-structures[25], contact structures[8],
and foliations contains the formalism to clearly articulate the problem, and possibly find
a solution (even if it is crouched in algebraic structures which are not easily reduced to
numerical computation). For this reason, I have formulated several intermediate problems
which bridge the gap between the classical local results and the problems addressed by the
modern formalism.

Given a "nice" region R in JR3 and a divergence zero vector field G in R, assume that we
can write

G = curl F in R (34)

12



The obstruction to doing so depends on the cohomology group H2 (R;IR) which we assume
to be trivial. Next, for simplicity, suppose

F. curlF # 0 inR (35)

We can then describe R by an atlas A specified by a Monge potential representation. That
is, the atlas A is a collection of charts:

(uI, 15_ i :5 (A (36)

where, n(A) is the number of charts in the atlas and, by the definition of an atlas, the
bijections ' satisfy

: (37)

Furthermore, by the definition of Monge potentials, we have

F = 1 grad ir +grad 0 on Uj (38)

Taking the curl we have

G = curl F = grad 1 x grad i on Ui (39)

and, by (35) we have:

F • curlF = (0 on Uj (40)

which coincides with what we expect from the definition of a chart. At this point, it is very
fruitful to pause and consider the geometric consequences of what we have done. Equation
(40) implies

0(6i,, onU nfUj (41)

while equation (6) implies

0(6ii) = 1 on Ui n Uj (42)

From this vantage we see that there are several interesting and relatively simple questions
which we may ask.

Question 1 Given (R, F) as above, what is the minimum, over all possible atlases,
of the number of charts in an atlas.

Clearly the above number gives a measure of "how impossible" it is to find a set of global
Clebsch potentials for F on R.

Equations (41) and (42) above tie our problem to the theory of G-structures, and the
integer which answers question 1 is the analogue of the "Liusternik-Snirelman Category" for
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some cohomology theory cooked up from the constraints on the differential structure on our
atlas.

A natural variant of the above problem is the following. Consider the minimum of the
answer to question 1 over all divergence free vector fields F which satisfy equation (35). If R is
a closed three-dimensional manifold then this yields an interesting topological invariant. This
invariant is intimately related to the work of Arnold[2], Moffatt[70, 71] and Freedman[36] on

using helicity, (mean asymptotic linking number) and mean asymptotic crossing numbers to
get lower bounds on the energy of ideal magnetohydrodynamic flows.

Another intermediate question is:

Question 2 Can we use equation (42) to try to build a differential structure

for a surface? (Obstructions would also be obstructions to having a set
of globally defined Clebsch potentials).
If so, can we then use the "o coordinate" to build a three
dimensional manifold? That is, can we build a foliation out of
surfaces "0 = const?"

This question ties back to the use of Helicity to define an obstruction to globally defined
Clebsch potentials.

My previous work in micromagnetics[50, 51], coupled with the work of Arnold[2, 4, 23,
24, 46, 86], Freedman[35, 36, 37], Moffatt[651 and others, indicate that a fruitful question to
consider is the time evolution of a set of Clebsch potentials. Specifically, in the "accessibility
problem", where a vector field F is given throughott R at two time instants t1 and t 2 and
on OR for t E [ti, t 2j, one asks if there exists a set of Clebsch potentials on R x it1, t2]. The
starting point of such an investigation is to derive a formula which says

FR . curl F dV it, + f (something)dS dt - number of

"flux lines reconnected"

in R x [tl,t 2]

In other words, let I = [t 1 , t 2 ], construct some 3-form w out of the given data on O(R x I),
and, without the hypotheses given by equation (35), the above formula says:

La(Rx) W = E oriented flux line reconnections in R x I

3.2 Algebraic gadgets which reveal 3-D complexity

The obstruction to finding a set of global Clebsch potentials is ultimately related to the
twisting and linking of flux lines, and the task at hand is simplified if we can find algebraic
structures which articulate this behavior. So far we have considered linking numbers and
Massey products in cohomology. I have found that a useful question to ask is: "How un-
contractible" is a given region of space? It turns out that Massey products, K.T. Chen's
iterated integrals[21], loop space homology, Dennis Sullivan's minimal models[84], the lower
central series of link groups, and Thurston's norm on homology[87] all come to play and are
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intimately related in this context. To point out these relationships, we consider the Poincari
homomorphism

P : ri(R) -. HI(R;Z) (43)

which sends the homotopy class of a loop in R to its homology class. The map is onto and
its kernel is the commutator subgroup [irl, iril. Hence we have the isomorphism

r, / [i,rw] = H, (44)

This isomorphism plays a key role in understanding counterintuitive aspects of making "cuts"
for magnetic scalar potentials in three dimensions[40]. Our immediate concern, is to find
commutative algebraic gadgets, more complicated than H1 , which help articulate t' -om-
plexity of irl. (In general, for r 1's coming from three dimensional manifolds, it is -Ten
known whether the basic group theoretic questions are "decidable" in the computer b tence
sense of the word.) We begin by considering the graded group gr(irl) constructed out of irl,
and as a preliminary step, consider the lower central series of a group G, defined recursively
by

G, = G, Gn+1 = (G,G), n = 1,2,... (45)

where (. , .) denotes a commutator. The associated graded group is formally defined as

gr(G) = E Gr./ Gr+1  (46)

and for a given t the object (see[41])

gr(G) / G'+' = t , Gr / G + i (47)

is of great interest. It is a nilpotent Z-graded Lie algebra. In particular, given R E R1, we
can use equation (44) and the following exact sequence[31, 83]

H2 (R; Z) A A2 Hi(R;Z) !4 ([w'i,wi1J / [ir',[wizwI) - 0 (48)

where:

7r1 = Wi (R)
, I is induced by the commutator and
/u is dual to U: A2 H, (R;7) --+ H2 (R;Z)

to obtain

gr(TI) / W1 = 7ri / [r',i] = H, (49)

gr(w,) / -43) = H, 0 Image([., . ) (50)

These relations have already been considered in my work on eddy currents in multiply
connected regions. In order to consider obstructions to Clebsch potentials, we want to
consider
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9 1

gr(7rj(A)) / ri() )(51)

where A C R is the exterior of a flux tube or some other region left invariant by the "flow"
of curl F. The literature cited in the bibliography[11, 15, 16, 17, 18, 19, 20, 21, 22, 28, 29,
33, 38, 39, 41, 42, 43, 58, 75, 77, 79, 80, 82, 83, 84] makes the following connections:

Massey Products

linktheory r Sullivan's Minimal
Models

Rational algebraically
Homotopy equivalent
Theory

_____________ K.T. Chen's Iterated
gr(w')/7r loop space homology Integrals

The additional algebraic gadget which appears in three dimensional problems is Thurston's
norm on homology[87]. Its relation to the above diagram is less obvious and does not seem
to appear in the literature.

3.3 Clebsch potentials and Hamiltonian systems

It was pointed out to me by Professor Marsden [U.C. Berkeley] that a solenoidal vector field
F possessing a set of Clebsch potentials and q implies a Hamiltonian structure for

x = F(x) (52)

To see this, consider O(x) and compute

t - VO .t - Vq . (V x Vq) by (52)Tt (53)
or Vq V.(V X V )

Alternatively, we can write
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= {~}q(54)

where we define

{ab} = V (Va x Vb) (55)

and it is easily verified that the bracket { I defines a Poisson structure. This brings us
back to the theory of contact structures. That is the global theory of Hamiltonian systems
can be used to define obstructions to finding Clebsch potentials.

From this vantage, it is clear that one must retreat from the overly ambitious goal. For
the antenna synthesis problem, it is reasonable to look for additional constraints on the
current distribution, which make it more amenable to description by a global set of Clebsch
potentials. Unfortunately, no such constraints are known. Alternatively, one could look to
other models of physical phenomena involving solenoidal vector fields (e.g. micromagnetics
or inviscid, incompressible fluid flow)(1, 601 to find simpler Hamiltonian systems which can
guide our intuition.
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4 Appendices

4.1 Paper published in which AFOSR support is acknowledged

"Metric Dependent Aspects of Inverse Problems and Functionals Based on Helicity"

4.2 Previous work related to topological accessibility

"A Topological Invariant for the Accessibility Problem of Micromagnetics"
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* Field Computations S. R. H. Hoole, Chairman

Metric dependent aspects of Inverse problems and functionals
based on helicity

P. R. Kotiuga
Department of ECS Engineerin& Boston University, Boston, Massachusetts 02215

The helicity of a vector field is a metric independent density. Functionals with first order elliptic
systems for Euler-Lagrange equations have been constructed from the helicity. The metric
invariance is preserved for finite element discretizations involving "Whitney elements." This
paper relates differential geometric aspects of inverse problems to helicity based functionals in
two contexts. First, the inverse problem of electrical impedance tomography in isotropic media
is known to be equivalent to determining a metric within a given conformal class from a given
"Dirichlet to Neumann" map. This fact is related to the helicity functional and Wexler's
algorithm for recovering an isotropic conductivity. Second, Maxwell's equations in "spinor
form" are shown to be the Euler-Lagrange equations of some complexified time dependent
generalization of the helicity functional. In this case metric dependent aspects yield insight into
the "inverse kinematic problem in seismology." These two examples illustrate the underlying
geometric structure in classes of inverse problems and algorithms for their solution.

"Do you know Grassmann's Ausdehnungslehre? Spottiswood spoke of it in Dublin as
something above and beyond quarternions. I have not seen it, but Sir William Hamilton of
Edinburgh used to say that the greater the extension the smaller the intention."

"May one plough with an ox and an ass together? The like of you may write everything and
prove everything in 4nions, but in the transition period the bilingual method may help to
introduce and explain the more perfect."
Excerpt of a letter from J. C. Maxwell to P. G. Tait; A., P. Wills, Vector Analysis with an
Introduction to Tensor Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1931), pp. XXV-XXVI.

I. INTRODUCTION Since hij= -hii, we can consider the h!,'s to be the
components of a skew-symmetric 4X4 matrix A. Given,

The issues to be addressed are most easily introduced these edge variables, we can find a piecewise linear approx-
by recalling the metric and coordinate invariance of the imation g to by appealing to Whitney forms:

helicity of the magnetic field intensity vector H. Since Am-

pire's law associates the magnetic field intensity H with 4

integration along curves, we naturally identify it with a = X hik1 d.J. (4)
differential 1 form as follows:

Here j, 1 <i<4, are the usual barycentric coordinates on A.
o=H dr. (1) When discretized, the contribution to the heicity from one

tertahedron takes on the amazingly simple form4:
The helicity is then defined to be

3 J&Ad5=Pfaff(A"), (5)

I(w) -Adw=LH curlHdV, (2) fa
() = R H l Hwhere, given an orientation for A, Pfaff(') is a square-root of det(AF):

4 where R is a three-dimensional region. The differential
form point of view' is inflicted on the reader at the onset Pfaff(A") =h 12 h3-h 3h24 +h 14h 23 . (6)
since the definition (2) is clearly metric and coordinate

invariant.2 Furthermore, these properties can be preserved Equations (5) and (6) are independent of interpolation
in the context of the finite element method by appealing to node coordinates and any metric dependent bilinear pair-
Whitney forms.3 To see this, consider a tetrahedron A with ing as a
vertices denoted by pi, 1 <i<4, and define edge variables hij the quadratic form associated with the "element stiffness
by matrix" can be evaluated with only three multiplications!

The helicity functional2

S p1h, ,,.(3)Nf J(HA) H" (I curl H+p grad A-J)dV (7)

5436 5437 J. App1. Phys. 73 (10), 15 May 1993 0021-89791931105437.03$06.00 0 1993 American Institute of Physics 5437
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e~plpits the metric invariance of helicity. Identifying the II. WEXLER'S ALGORITHM REVISITED
C

current densit-y J with a differential 2 form, the helicity C a Rnho
functional is seen to be coordinate-independent except for conductiity R Stady curren io ened
the term involving the Lagrange multiplier A which en- isotropic conductivity a. Steady current flow is governed
sures that/uH is a solenoidal vector field. Again this prop- Taki

erty is preserved when the functional is discretized using div J=0, J= oE, curl E=0 in R. (12) , divid

Whitney forms and the discrete Euler-Lagrange equations LettingE be minus the gradient of the scalar potential ,T
have a remarkably simple interpretation in terms of Am- Lettin esbe tgan tfa potential n ,
pere's Law.5 This minimal dependence on constitutive laws wecnpecieabudrkoeta ) nO n e iit)phrase the determination of J in terms of a Dirichlet prob- I .
and coordinates makes the Helicity functional ideal for lem for 4:
problems requiring iterative solution where either the mesh

formed or the constitutive law is updated at every -div(orgrad )=0 in R, (13) " VOW

aion. This aspect will be developed in Sec. II when we .!.we s

isider Wexler's Algorithm for Impedence Computed O=OB on aR. (14) -t-oot

,mography. Given a solution to the above boundary value problem, we h
To introduce a complexified time dependent helicity can calculate the Neumann data aA -grad 0 and recover c.

functional, consider first the Euler-Lagrange equation for the normal component of J on OR. Alternatively, instead inve
the functional (7): of the Dirichlet data (14), J can be uniquely determined -

by imposing the Neumann data on OR. From a variational
(H\ (curl H+.i grad ) point of view, the inhomogeneous Neumann data is diffi- ict

A -div(,uH) cult to impose and, when R is two-dimensional, the Neu-
mann problem for 0 is often reformulated as a Dirichlet

If we choose Cartesian coordinates and set 11 I, D satis- problem for a stream function. Similarly, in three dimen-
ies sions, we can express J as the curl of a vector potential T. We

Up to a "gauge transformation" T is just the magnetic field adi= _V 2 , (9) intensity H and the situation is analogous to the use of a We

where I is the 4x4 identity matrix. 2 Thus D is an elliptic vector potential in magnetostatics. By imposing the tan-
partial differential operator which, in some concrete sense, gential components of T on OR, the normal component ofis the square root of the positive definite Laplace operator. J is implicitly prescribed. When J and E are eliminated inThespetrumofDis the square root of theaposi it L ce Lpra. Eq, (12) through the use of T, current boundary condi-The spectrum of D is the square root of that of the Laplace tions are immosed, and the "gauge" of T is fixed, we end up
operator and square roots are distributed in a manner
which is nearly symmetric about zero. This has interesting with

consequences for the numerical solution of the discretized 1
equations. 6 If we define an operator D by curl curl T =0 in R, (15)

D 1(10) div(oT)=0 in R, (16)

AXT1=RfxTB on OR. (17)
then using Eq. (9), it is easy to verify that In order to avoid confusion, we call Eqs. (14) and (17),

voltage and current boundary conditions, respectively.
121 For a given inhomogeneous conductivity a, there is a

unique correspondence:

Thus, FD is a partial differential operator which, in some 4) on OR mod constants+-*A- curl T on OR (18)

concrete sense is the square root of the wave operator. which we call the voltage to current map. Impedence to-

Note that D now needs to operate on pairs consisting of a mography seeks to recover a given this voltage to current J
complex valued vector and a complex valued scalar. Al- map. In practice, given a collection of voltage and current
though the operator D is closely related to the Dirac op- measurements {4)BaA curl Ti} i, we would like to re-
erator and hence the quantum mechanical view of magne- cover a reasonable estimate for a in R. Reference 8 seems
tism, our purpose is to extend previous work7 and consider to have proposed the most useful algorithm for doing this.
how a related operator reproduces Maxwell's equations See Kohn and Vogelius9 for a survey of early results, and
while elucidating the coordinate dependence of the associ- Sylvester and Uhlmann' 0 for a geometric understanding of ;.

ated complexified time dependent helicity functional whose the problem. Our concern is to understand how the helicity
Euler-Lagrange operator closely resembles D. Thus, Sec. functional points to a useful variant of Wexler's algorithm. -

III of this paper considers a complexified time dependent Consider the helicity functional:
helicity functional whose Euler-Lagrange equations are re-
lated to Maxwell's equations just as Eqs. (8) are related to I(T,) = T. ( curl T+a grad OW)dV. (19)
magnetostatics. This functional is then considered in the fR
context of inverse problems. The Euler-Lagrange equations are
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curl T+o grad 0=0, (20) Pd*

-div(oT) =0. (21)

Taking the divergence of Eq. (20) yields Eq. (13) while The Euler-Lagrange equation for K(F,O) is

dividing Eq. (20) by a and taking the curl yields Eq. (15).
Equation (21) is the same as Eq. (16). Hence any pair ~a
(T,O) satisfying the Euler-Lagrange equations of the he- rlFi + grad =
licity functional (19) automatically satisfy the partial dif-- div (F) -div P
ferential equations (but not boundary conditions!) of (25)
steady current conduction when formulated in terms of
vector or scalar potentials. Furthermore, recalling Eq. (9) When =1, we s that the operator D defined by Eq. (25)is the operator D of Eq. (10) if it were not for a missing
we see in what sense Eqs. (20) and (21) are the square
root of the combination of both potential formulations. time derivative of 4. This is an intentional omission since,

We now demonstrate why the metric invariance of he- if P is real, Eq. (25) reduces to Maxwell's equations when

licity is so useful for three-dimensional impedance tomog-
raphy. Suppose we have the data {o,,,i curl T,})= I of this E + ill = F, (26)

inverse problem and suppose that from this data we find a D + i =F, (27)
consistent set of pairs of boundary conditions for the he-
licity functional {(4),i T,),(RxT,)},= Furthermore, ap

(0,T,) and (iX T.) be denoted by I,,y. and lo , ., re- tr,'

spectively. Given an initial "guess" o0 for the conductivity, With these identifications the conservation of charge is
we can find the stationary points of the functionals Iootv, satisfied automatically, the variables are assumed to be di-
and , where 1<n<N. In general, after k iterations of mensionless, and we have the constitutive laws for chiral

a Wexler's updating scheme, we can let {Tk,v,4kvl and media if y is complex. When 4 is forced to be zero, Eqs.

{Tk,.,,),} be the stationary points of 4,k,,, respectively. (25) are well known.7 '1 However, for nonzero 4 there are

The rule for updating a is then given by several novel aspects of the present formulation. First, 4 is

in a Lagrange multiplier which imposes the divergence equa-
Ii-l curl Tk~, "grad 9k, v( tions, That is Eq. (25) represents eight scalar equations

Ok+ = (22) which are Maxwell's equations in component form. Sec-
k =1 grad 4 )k, v* •grad Okv " ond, the operator b represents a square root of the wave

Hence every iteration of the proposed algorithm involves operator applied to F and the square root of the Laplace
5) finding the stationary values of 2N functionals I,. v, operator applied to 4). Third, as in Sec. II, the square root

l4k., 1 <n <N and updating a by the rule (22). The sur- operator has some nice metric independent aspects which

prising aspect is that the 2N functional all depends on ak in can be exploited in the context of inverse problems. These

the same way! Furthermore, from the arguments presented follow from the appearance of the helicity term. The in-

7) in the introduction of this paper, the dependence on a only verse problem connected to the complexified helicity func-

occurs in the coupling of 4 to T and not in the helicity term tional is the inverse kinematic problem of seismology. See

of the functional. For finite element implementations, this Sec. II of Ref. 10. In analogy to the real case, the metric

means that the updated a given by Eq. (22) only affects a independence of the helicity term ensures that only a small

relatively small part of one stiffness matrix, in each itera- part of the functional needs to be updated when the con-
tion! stitutive law is updated.

.8). Support from AFOSR is gratefully acknowledged.
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A topological Invariant for the accessibility problem of micromagnetics
P.R. Kotiuga and R. Giles
Department of ECS Engineering, Boston University, Boston, Massachusetts 02215

A singularity-free three-dimensional micromagnetic configuration is accessible from a given
initial state if there is a continuous family of interpolating states. This paper proposes an
integral formula for the accessibility invariant which classifies (up to homotopy) the possible
final states which are inaccessible from a given initial state. For infinite samples, we give
explicit formulas describing initial states from which the final state of uniform saturation
cannot be accessed.

I. INTRODUCTION where R is the magnetic sample and S2 is the Feldtkeller

Fundamental to explaining the operation of micromag- sphere. If we introduce spherical coordinates (0,0) on S2

netic memories is the assumption that information can be then the normalized "volume form" on S' (element of area

stored in topological configurations of magnetization which divided by total area) is

can be made energetically stable. The notion of a topological w.= (1/4ir) sin 0 dOA dO. (2)
configuration is a consequence of the basic tenet of micro- Definition ( 1 ) makes 0 and 0 functions of the coordinates on
magnetics which asserts that the magnetization vector field R. We can "pull back" wi via the mappingf to obtain a differ-
is continuous and has a nonzero length. Unfortunately, there ential 2-form on R in terms of which we define the gyrovec-
are circumstances where this basic tenet must be relaxed and t
one considers micromagnetic singularities. This paper intro-
duces the notion of topological accessibility into micromag- f'o = (l/41r)g.dS,
netics, defines an accessibility invariant which distinguishes grad (cos 0) X grad q. (3)
mutually inaccessible states, and relates the accessibility
problem to micromagnetic singularities. Since pull backs and exterior differentiation commute

The previous investigation of the formal properties of (f*d = df*) and w is a closed form on S 2, we can conclude

Bloch points' plays an important role in the present paper that' the gyrovector is solenoidal. That is,

for two reasons. First, for any two singularity-free configura- dw = 0: 0 = d(f*w) ' div k = 0. (4)
tions defined at times t, and t2, which are mutually inacces-
sible, one would like to have a concrete understanding of Assume, for the time being that the magnetic sample R occu-

how and why Bloch points come into play. In the case where pies all of R3 and is free of point defects. It is then natural to

Bloch points cannot enter or exit through the boundary of a describe the gyrovector by a vector potential. That is, we

magnetic sample R, Bloch points must be created and anni- would like to find a 1-form a or a G such that

hilated in pairs of opposite "degree."I Hence, it is possible to da = f't, i.e., curl G =g. (5)
regard the creation-evolution-annihilation cycle of a Bloch Assuming that in is sufficiently close to the constant vector
point pair as a closed curve in R X [t, ,t 2 1. For static config- field far away from the origin in R3, the integral
urations this helps us attribute inaccessibility to reverse
magnetized tori which require the creation and annihilation
ofa Bloch point pair in order to collapse. I(f) = a Af*w 2 -G.dV (6)

The second reason why this paper builds on a formal ,( 4 1 zr Ji

treatment of Bloch points is that the "accessibility invar- is finite and invariant under the "gauge transformation":

iant" is constructed from a."vector potential" for the sole- a-a + dx , i.e., G--G + gradx, (7)
noidal gyrovector field and the motivation for this construc-
tion is most transparent through the use of differential provided thatX is close to constant far away from the origin.
forms. Specifically, Slonczewski's gyrovector integral for the The integral defined by Eq. (6) always takes on integer
degree of a mapping into the Feldtkeller sphere,2 when re- values. It is the purpose of this paper to show how the var-
phrased in terms of differential forms,' provides the lan- ious nonzero integral values of (6) classify the micromag-
guage which relates the inaccessibility invariant, in the case netic configurations which are inaccessible from the field
of infinite samples, to the Hopf invariant. 3"4 consisting of a constant m throughout R' and to generalize

Let us review the development of the Hopf invariant the construction to finite samples R and nonconstant initial
from both the differential form and gyrovector points of or final states. Traditionally, the Hopf invariant is defined
view. Recall' that a continuous, nowhere zero, three-dimen- for mappings of S ' (the unit sphere in RW') onto S 2,3".4 but, as

sional, magnetization vector field ni can be normalized to we shall see, R' is easily mapped onto S3 by stereographic
have unit length and thought of as a mapping projection and the asymptotic conditions on m (and hence,

fiR_.S 2, (1) D)ensure thatfcan be regarded as a map from S to S 2"
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SIthen falls back on the linking number interpretation of the
t LHopf invariant.3 Consider any two regular valuesp, and P2

for the mapf That is, the Jacobian off has rank 2 atp, and
Pz- The preimages offa7 'of these two points are "compact

T C manifolds" and, hence, disjoint circles in S '. The Hopf in-
FIG. 1. A reverse magnetized torus. variant is the linking number of these two circles:

l(f) =- Link[ of- '(p, ),of - I (P2 ) I - 011)

II. THE HOPF INVARIANT AND MICROMAGNETICS The proof of the equivalence of Eqs. (6) and ( 11) makes

Given a magnetization configuration m(t,r) on all of R3  clear why the Hopf invariant is always an integer. Returning

at some initial t,, we can ask whether there is a singularity- to Fig. I we see that Link Vi'( - I- )fF'( + I )1 is equal

free time evolution such that at time t, m (t 2 ,r) is some state to one. Hence, the reverse magnetized torus cannot evolve

of uniform saturation given by a constant vector m. For without singularities into the state of uniform saturation.

example, consider the reverse magnetized torus of Fig. 1 (a) We now consider a more explicit treatment displaying

where, in Feldtkeller's notation,' Fig. 1 (c) represents the states with higher Hopf invariant. A family of mapsfpq from

cross section depicted in Fig. 1 (b). A simple rescaling argu- I 3 to S2 describing a continuous nowhere vanishing magne-
ment shows that shrinking the torus makes m (t,r) discontin- tization field m is given as a composition: "'6

uous in time at t2. Assuming that the torus would like to .q = a2 hgp.qa 3, (12)
shorten its length without changing its overall diameter, we where, introducing coordinates, we write
expect it to "break symmetry" and collapse by creating a
Bloch point pair which is annihilated when the final state is R - .SS C_,S2
achieved. In general, the integral of Eq. (6) gives an integer 0,1, h 0

whose absolute value is, in some vague sense, the minimum (x, ,x2 ,x3 ) - (z ,Z2 ) - (w, ,w2 )-w -. (m + imy,m ).
number of Bloch point pairs required to be created and anni- Here S is the unit sphere in C2

W? is the complex projective
hilated in order to obtain the state of saturation. In the case se, S a a are tereoirapic projecti eof Fig. 1 we shall see that space, a3 and a2 are stereographic projection into three- and

two-dimensional spheres, respectively, and a2 h is the Hopf
I f G = 1. (8) fibration. Explicitly, a 3 is given by Eq. (9), while the re-

16172 Jw maining functions are defined as follows:
In order to make this plausible, we need some formal results.
Consider the unit sphere S3 in R' to be the unit sphere in C' g,.q; (z1 ,Z2 ) -" (2,) = (w1 ,w2 ) with p,qcZ;
defined by z, , + z2 Y2 = 1. Stereographic projection, de- h: (w, w2 )-.to/w, = w;
noted by a3 , then maps R onto S' where a 2 : W- (2w, l - 1w12 ) = (m, +impm). (13)

o'3: (XX 2 ,X13 )-(Z1,Z 2 ) 1 + 1W12

"2x +2ix,,2x3 +i(l - x 3) Whenp = 1 =q the composite map is homotopic to the con-
i + i( - + - ) (9) figuration described in Fig. I and from the discussion of Sec.+ +x 2 X

: 2 3 II, we conclude that I(o'2h) = 1. Since the Hopf invariant
3: (zz 2 )--(Xx 2 ,X3 ) can be described in terms of the degree of a map, 3 it follows

(Re z,,Im z,,ReZ2) when IMZ2 (10) that

1 - Imz 2  I(fp.qI a) = i(a 2 hgpq) = deg(g.q). (14)

Hence, when m approaches the constant field as
x2 +X 2 +X2_0 i lsAlso, since the function z"' has degree m when regarded as ax1 2 3 +x -. there is no loss of generality in consider- map from the unit circle in the complex plane to itself, it

ing the magnetization vector as a mapfir; I from S 3 to 2. In follows from Eq. (14) that
this case, Eq. (6) is the traditional Hopf invariant. The main
results concerning the Hopf invariant are summarized by the I(fp.q o,-) deg(gp.q) pq. (15)
following.3' 4  Thus from theorem I we conclude the following:

Theorem 1: (a) The Hopf invariant is independent of Theorem 2: (a) Two configurationsf. andf, ,q defined
the choice of a (i.e., G) in Eq. (5). (b) Homotopic mapsf by Eq. (12) are mutually inaccessible if pq#p'q'. (b) If
have the same Hopf invariant. (c) If two maps, fa- ' and pq = p'q' then the maps g,,q and g.q are mutually accessible
f a; ' have the same Hopf invariant then they are homotopic in S' but the mapf,., may not be accessible fromf,.q' in R'
in S'. using a finite amount of energy.

Here homotopic means that there is a continuous family To obtain a concrete and intuitive appreciation of these
of interpolating states. For the above example of a reverse results, it is useful to obtain explicit formulas for the maps
magnetized torus, the configuration is homotopic to the fp.q in terms of torroidal coordinates on R1 (Ref. 7):
Hopf fibration for which a straightforward calculation3

shows that ( ) = 1. That is, Eq. (8) is indeed correct. (xI + ix2 ,x 3 ) =
Frequently, the integral expression given by Eq. (6) is coh(u) - cos(u)

too cumbersome to be an effective computational tool. One X [ sinh (v) e",sin (u) ], (16)
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where O<v oo, 0<0,0r002ff, 0<u<2r. Substituting Eq. (16) integral J(f) is invariant under the gauge transformation
into (9) and simplifying we obtain a-a + dX .The linking number interpretation is also valid

1 snhso that the integral J(f) takes on integral values which repre-
(z, ,z2 ) sinh v) e'J,e" (17) sent the linking number of two preimages off in the closed

cosh(v) manifold a(R X I). Indeed we expect such a result since Eq.

Equations (13) then give (21) reduces to Eq. (6), when m is a constant vector on dR

(2ae+ '  -( " , a 2 ) for all time, over R at t2 , and on R3 - R at t,.

1 + a2  A concrete understanding of Eq. (21 ) in terms of vector

a = sinhP( v)coshq - P( v). (18) and scalar functions on R3 × I is obtained by appealing to an
analogy with electrodynamics. The electromagnetic field is

Equation (18) describes, in terms of torroidal coordinates, described by a differential 2-form /6 on space-time which
continuous, nowhere zero rr .gnetization distributions with being closed can be expressed as the exterior derivative of a
Hopf invariant pq. The special case ofp = q = ! is described potential I-form a:
in Fig. 1. In general there is a 21Tp twist in the direction of
increasing 0 and a 2irq twist in the direction of increasing u. da = B=dS + E-dd,

Returning to the linking number interpretation of the Hopf where
invariant, the generic curves of constant m, with linking a = Adl - 0 dt. (22)
number pq, are found by fixingp - qu and v.In micromagnetics, /f plays the role off*o so that the

III. THE ACCESSIBILITY INVARIANT vector fields A and B are formally analogous tc G and k.

We now generalize the Hopf invariant to obtain a topo- Thus, to complete the prescription given by Eq. (20) we

logical accessibility invariant which is useful in the context need to introduce an analog of 0 and E. Introducing a szalar
of finite samples for which the magnetization is given potential y, the equation da = , shows that Eq. (20) can be
throughout the sample at initial and final times and on the rewritten as
boundary of the sample as a function of time. Consider a d cl +' d (

da~url -d (grady- -1 t= a, (3
finite region R and a time interval [ t,,t2 ] denoted by I. The da
region R is assumed to have no defects or "holes" so that the Once a potential (G,") is found Eq. (21 ) becomes
(co)homology groups are trivial. The magnetization on the
boundary a(R XI) of the region of space-time is fixed by X( grady - G
specifying m(t 1 ,r) and m(t 2 ,r) for all rER and m(tr) for ltR -curl dSdt
t, <t<t, and rE a R. Here it is natural to regard time as the I, f r V.lrparameter describing the homotopy between mutually + [GcurlGIt dV- G curl G

accessible initial and final states. The situation is as before R

except that a continuous, nowhere zero magnetization field, (24)

if it exists, would be described by a mapfwhich extendsfi Invariance of Eqs. (23) and (24) under gauge transforma-

fR XI-S
2 , where fa(R XI) _S 2 . (19) tions of the form

If R has trivial (co)homology groups then it is possib!e to G-G+ gradx, 7 + A2, (25)
find a potential I-forms a and & to describe the pull back of at

are still best understood in the context of equation
the normalized volume form on S2 : "a-a + d,". The results of theorem I and tht- calculation

da-=)*toon R X, da=f*w on a(R XI), (20) belowEq. (21) are stated as follc.ws:

Consider the integral defining the accessibility invariant: Theorem 3. The integral given in (21 ) or (24) takes on
integei values which are nonzero only if the initial and final

J(j) = a A da. (21) states given in (19) are mutually inaccessible. If R is a con-
JOIR /) tractiole region of finite extent, the states are topologically

The value of this integral is zero i"the mapfcan be extended accessible whenever the integral has a zero value.
to a singularity-free mapf' because if such an f exists, by The relevance of Eq. (6) to micromagnetics has also
Stokes' theorem and Eq. (20) we have been noted by P. Asselin, who provided the example illus-

trated in Fig. 1. The authors would like to thank Honeywell
J(]f) =(f) =f IA d f d(a A dd) Inc. for financial support of this work and Floyd Humphrey

) R ,I, JRd =. for his encouragement.
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